

Advanced Physical Layer: Ethernet ovunque, anche in zona EX!

Paolo Ferrari

Dipartimento di Ingegneria dell'Informazione, Università di Brescia

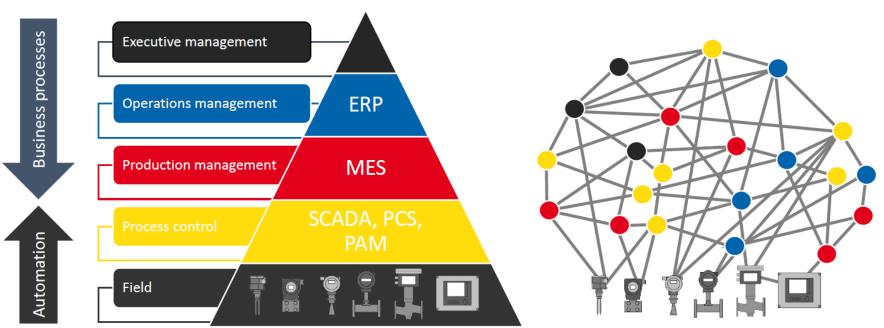
Via Branze 38 - 25123 Brescia (Italy)

e-mail: paolo.ferrari@unibs.it

CSMT Gestione Scarl

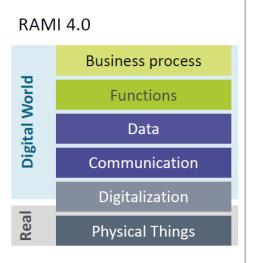
Centro di Competenza PROFIBUS e PROFINET - Brescia

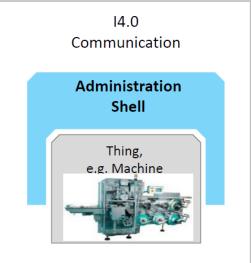
http://www.csmt.it profilab@csmt.it Tel: +39-030-3715445 fax: +39-030-380014



Industry 4.0 impatta sull'automazione di processo

- La classica piramide CIM non è più sufficiente
 - Ogni dispositivo deve comunicare con tutti gli altri





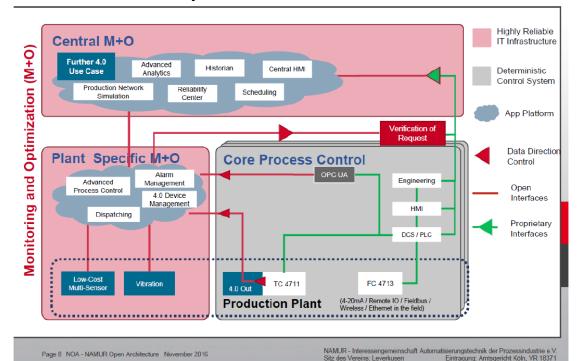
Componenti per Industry 4.0

- Tutto ruota intorno all'integrazione (automatica)
 - Ogni oggetto deve avere uno "strato di amministrazione" (administration shell)
 - La gestione dell'oggetto avviene attraverso l'interfaccia di comunicazione

Connection: I4.0 Communication

Administration Shell: Digital Part

Thing: Real Part

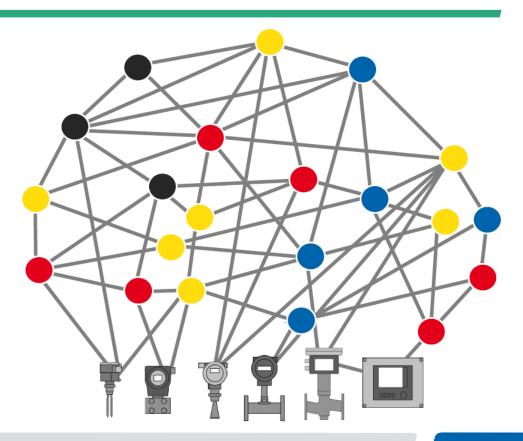

NAMUR Open Architecture (NOA)

- NOA è un approccio coordinato allo sviluppo di Industry 4.0
- Considera in modo speciale la grande base di installato
- Parti importanti
 - Interfacce specifiche per l'integrazione in Cloud dei dispositivi di campo.
 - Sensori addizionali per il monitoraggio e l'ottimizzazione del processo

NOA - NAMUR Open Architecture

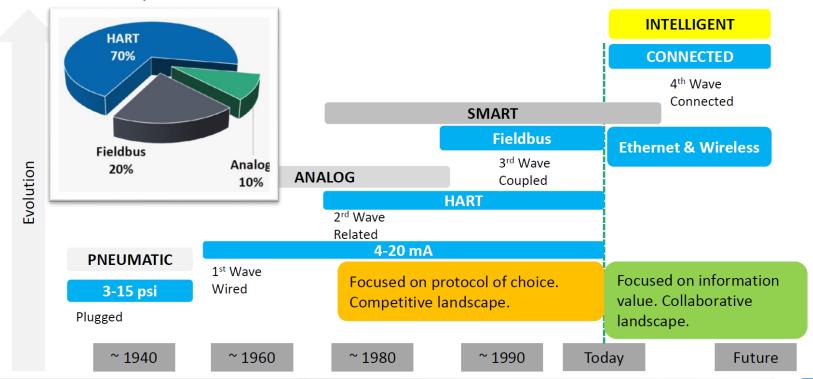
NAMUR Open Architecture e Industry 4.0

- Domanda spontanea:
 - Ogni dispositivo dialogherà con il Cloud utilizzando un modo diverso?



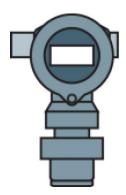
Infrastruttura di comunicazione unificata

- Nessun Gateways o Proxies tra le reti e i bus di campo
- La più alta banda possibile per abilitare nuove funzionalità
- Comunicazione basata su IP
 - Tecnologia abilitante per Industry 4.0
- Accesso "open" ai dispositivi di campo
- Dispositivi multiprotocollo
 - Un protocollo per ogni applicazione



L'evoluzione degli strumenti intelligenti

Gli utenti sono spaventati dall'evoluzione?

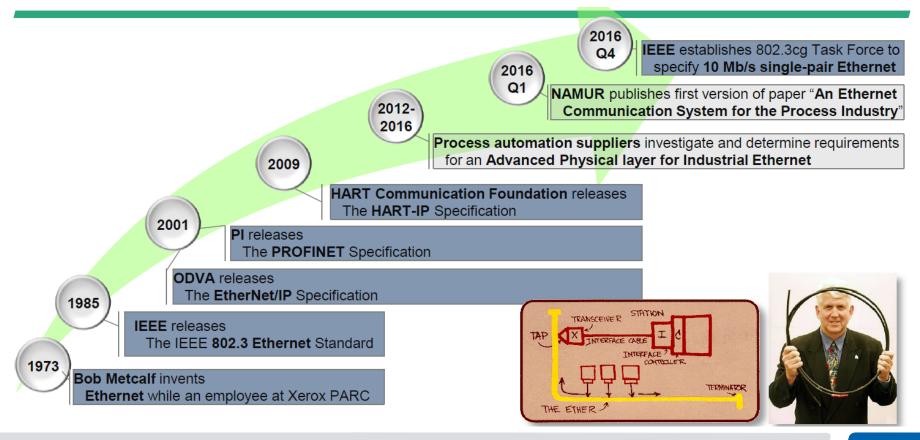


La prossima generazione di strumenti di processo

- Comunicazione basata su Ethernet e IP
 - Cablato e Wireless
- "Information model" con semantica (Common Data Dictionary) per i dispositivi
- Un insieme minimo di parametri condivisi per il commissioning
- Supporto di nuovi scenari applicativi
 - es. "Device to Device communication" per lo smart manufacturing
- Sicuro (Security)
- Sicuro (Safety)

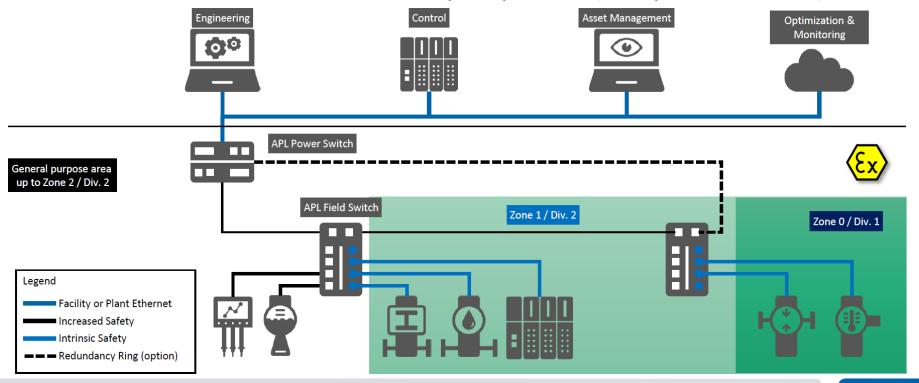
Il progetto APL – Advanced Physical Layer

■ Vi prendono parte aziende e consorzi di spicco nel settore dell'automazione di processo



Punto di partenza: Ethernet e NAMUR

Punto di partenza: le richieste di NAMUR


- Un unico tipo di comunicazione (Ethernet) per l'industria di processo
- Focus specifico sull'industria di processo
- Compatibile con il ciclo di vita di un impianto
- Facilmente integrabile con DCS e con dispositivi da campo
 - Dispositivi a 2 fili e a 4 fili
- Installazione in zone Ex e Non Ex
- Metodo di connessione semplice e robusto
- Elevati standard di security, safety e availability (disponibilità)

APL: architettura di rete

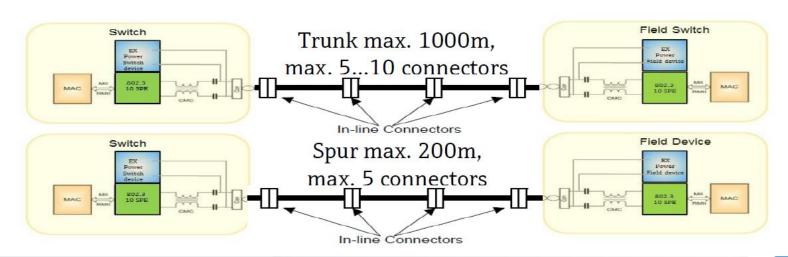
Ricalca l'architettura classica dei bus di campo di processo (esempio PROFIBUS PA)

APL: specifiche di progetto

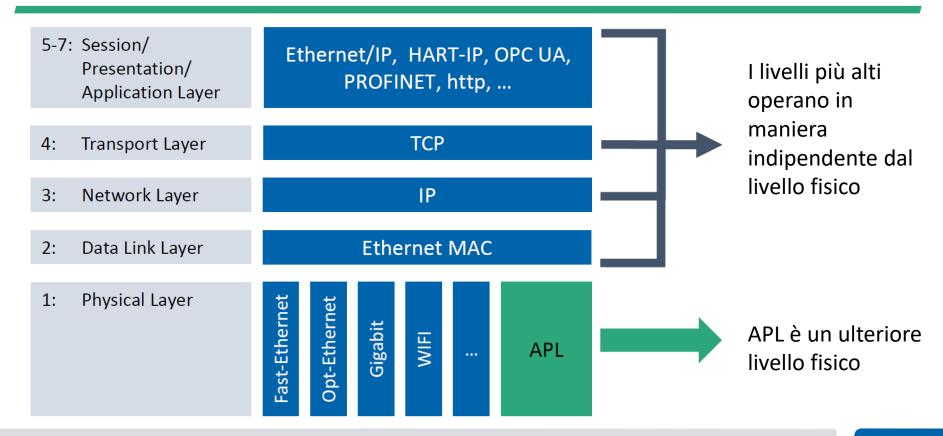
Trunk

- Installazione in zone a rischio esplosione Zone 1, Class 1 Div 1*
- Lunghezza cavo <= 1000m @ 10Mbps full duplex</p>
- Increased Safety: comunicazione e potenza <= 50 dispositivi @500mW</p>
- Intrinsic Safety: solo comunicazione
- Topologie : Ring, Line, Star a seconda del tipo di strategia di alimentazione

Spur


- Installazione in zone a rischio esplosione Zone 0, Class 1 Div 1*
- Lunghezza cavo <= 200m@10Mbps full duplex</p>
- Intrinsic safety: comunicazioen e potenza (loop) oppure solo comunicazione
- Intrinsic Safety molto simile a FISCO
- 2 fili , cavo bus di campo IEC61158 type A schermato
- APL Ethernet Switch alimentato separatamente o alimentato dal Trunk (increased safety)

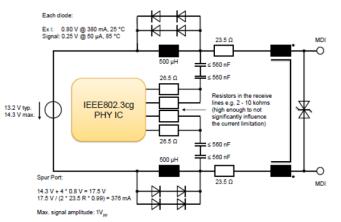
APL e lunghezze dei segmenti

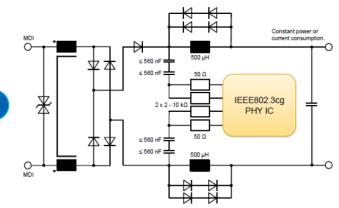

- Supporta connessione a 2 fili : cavo standard bus di campo IEC61158 type A (schermato)
- Alimentazione per dispositivi a basso/alto assorbimento da 500mW a 5W, 10 W (ia,ib,ic)
- 10 Mbps , full duplex via MII Interface compreso auto-negoziazione
 - (supporta future estensioni: APL Phase 1 : 10Mbps and Phase 2: 100 MBps)

APL supporterà tutti i protocolli!

APL: Esempio di implementazioni e segnali

2 wire

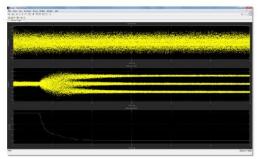

Cable


Intrinsic Safety Parameters according to IEC 60079-11

Switch Port ib IIC	Switch Port ib IIB	Field Device and Accessories
U _o ≤ 14.0V	U₀ ≤ 16.0V	Ui ≥ 17.5V
$I_o \le 183 \text{mA}$	I₀ ≤ 288mA	li ≥ 380mA
rectangular supply	rectangular supply	
P _o ≤ 5.32W	P _o ≤ 5.32W	Pi ≥ 5.32W
$L_i \approx 0$	L _i ≈ 0	Li ≤ 10μH
$C_i \approx 0$	C _i ≈ 0	Ci ≤ 5nF

Intrinsically Safe Spur Port, Version I

Intrinsically Safe Device Port

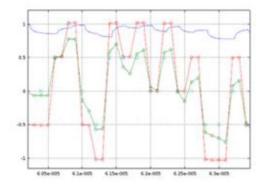

APL Fase 1: 10Mbit/s

Stato attuale:

- Basi tecniche e concetti del IEEE 802.3cg Working Group
- Simulazioni del comportamento
- Evaluation Boards per ulteriori test pratici
- Primi prototipi di Physical Layer
- Field device prototipali per test pratici

Simulating 1032 m AWG18/1 Cable

APL Fase 2: 100Mbit/s


Stato attuale:

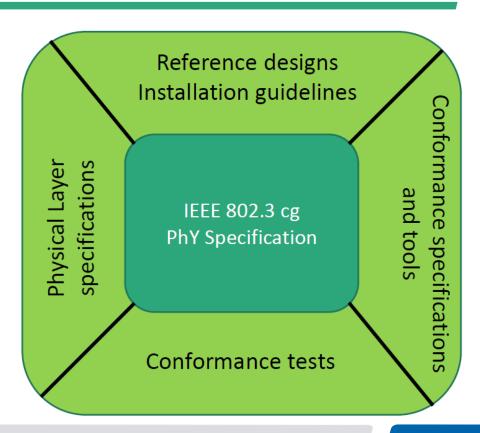
Basi tecniche teoriche

- Simulazioni del comportamento
- Evaluation Boards per ulteriori test pratici
- "Call for Interest" alla IEEE 802.3 nel Q3/19

18

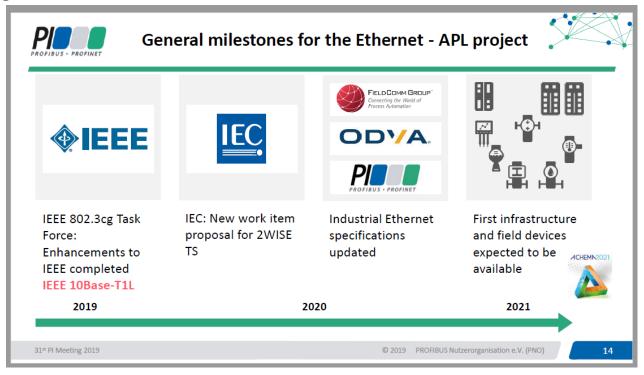
Confronto APL Fase 1 e APL Fase 2

■ Le caratteristiche della APL Fase 2 sono un tradeoff tra lunghezza del cavo e velocità


Attribute	Phase 1 – 10 MB	Phase 2 – 100 MB	Comment
Reference cable	Туре А	Type A	
Topologie: star, ring, line	X	X	
Communication	10 Mbps	100 Mbps	
Modulation	PAM3	PAM3	100 Mbps: Optional PAM5
Trunk			
Installation in Zone 1 / Class 1 Div. 1	X	Χ	
Available power	60 W		Same power Concept possible
Intrinsic safety	X	X	
Cable length	1000 m	200-400 m	Depending on Cable type
Spur			
Cable length	200 m	200 m	
Interoperability		Auto negotiation	100 Mbps backward compatible with 10 Mbps

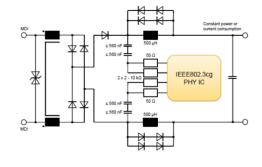
Riassunto

- Oltre alla IEEE 10Base-T1L sono necessari anche:
 - Front-End per la Process Automation (intrinsic safety)
 - Cavi e connettori
 - Conformance test
 - Test EMC
 - Adattamento delle specifiche delle diverse User Organization



Roadmap

Ultimi aggiornamenti



Conclusioni

Domande?

PROFIBUS e PROFINET innovano

Industry 4.0 per il processo