

Principi di progettazione di una rete PROFINET

Paolo Ferrari

Dipartimento di Ingegneria dell'Informazione, Università di Brescia

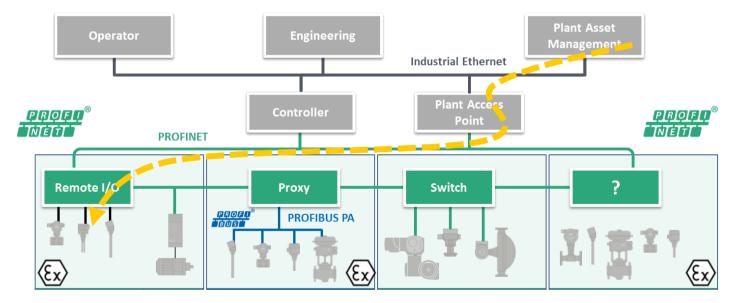
Via Branze 38 - 25123 Brescia (Italy)

e-mail: paolo.ferrari@unibs.it

CSMT Gestione Scarl

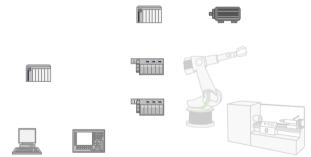
Centro di Competenza PROFIBUS e PROFINET - Brescia

http://www.csmt.it profilab@csmt.it Tel: +39-030-3715445 fax: +39-030-380014



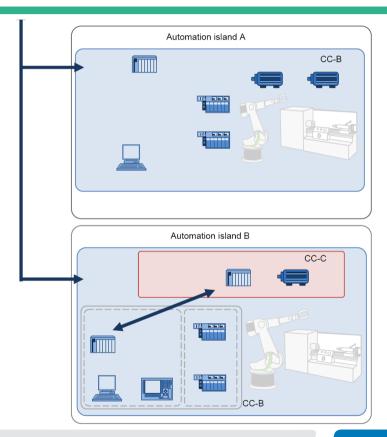
Reti PROFINET nell'era Industry 4.0

- PROFINET permette un approccio completo
 - Performance adatte ad ogni applicazione, dal processo fino al motion control
 - Pronto per gli accessi Industrial Internet of Things propri di Industry 4.0.



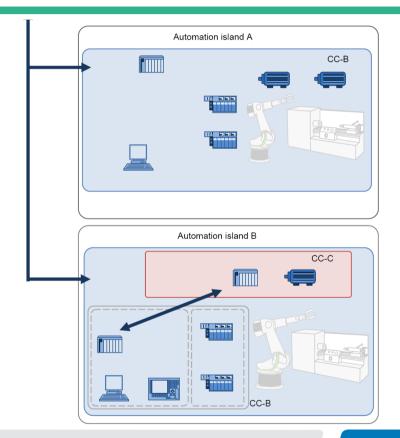
L'architettura di rete dipende dall'applicazione

- Si parte dalla struttura fisica richiesta dall'applicazione
 - Vincoli meccanici
 - Vincoli normativi
 - Interfacce uomo macchina
 - Postazioni di lavoro
 - Ergonomia
- Si aggiungono i vincoli di sistema
 - Connessioni "verticali" (supervisione e Industry 4.0)
 - Flusso dei dati



Creazione di sottoaree indipendenti

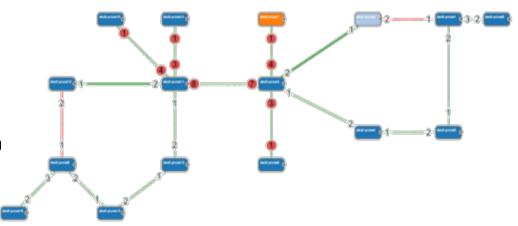
- Si individuano delle isole di automazione che contengono componenti funzionalmente correlati
 - Flusso dati interno: (non attraversa i confini)
 - Flusso dati esterno: (attraversa i confini)
 - Dispositivi sincronizzati



Scelta della tipologia di dispositivo

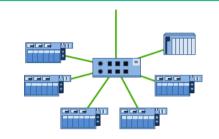
- Assegnazione delle varie Conformance Class ai dispositivi che appartengono alla rete
 - I dispositivi CC-C formano un gruppo separato
- Suggerimento
 - Dispositivi CC-B e CC-C sono consigliati nei progetti nuovi

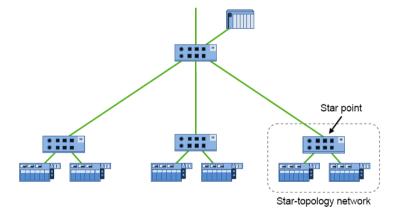
	Conformance classes			Options
	CC-A	сс-в	сс-с	(for all CCs)
Cyclic data exchange, Real-Time (RT)				
Acyclic data exchange, Non-Real-Time via standard TCP/UDP				
Access to IT services via standard TCP/UDP				
Reading out of identification information of devices (I&M function)				
Diagnosis of device states (tiered alarm model)				
Same device model as for PROFIBUS DP facilitates technology switch				
Model for integrating PROFIBUS and other fieldbuses				
Diagnostics for monitoring and maintenance of network components				
Topology detection for simple device replacement, etc.				
Topology display for easy plant documentation				
Isochronous real-time communication (IRT)				
Further optimized IRT communication for the most stringent requirements				
Use of PROFIdrive profile for drive technology and motion control				
Use of PROFIsafe profile for safety-related communication				
Use of PROFlenergy profile for energy efficiency optimization				
Access by multiple controllers to one device input (shared input)				
Distribution of device functions to various controllers (shared devices)				
Access to devices without plant shutdown (Configuration in Run)				
Time stamping for alarms and status messages				
Redundancy mechanisms for high plant availability				
Extended I&M functions (see item 4)				
Industrial Wireless communication via WLAN and Bluetooth				
Call-up of a specific engineering tool (of a device)				
Application areas of conformance classes of PROFINET	1			
Building automation, process automation				l
Drive technology, machine control				
Isochronous applications, motion control				



Topologia di rete

- PROFINET garantisce flessibilità di progettazione del layout di rete
 - Tutte le topologie standard sono possibili con PROFINET
 - Un numero di combinazioni quasi illimitato
- La topologia di rete risulta principalmente da criteri quali :
 - Posizione dei componenti
 - Le distanze da coprire
 - Requisiti EMC
 - Requisiti di isolamento elettrico
 - Requisiti per una maggiore disponibilità
 - Considerazione dei carichi di rete .

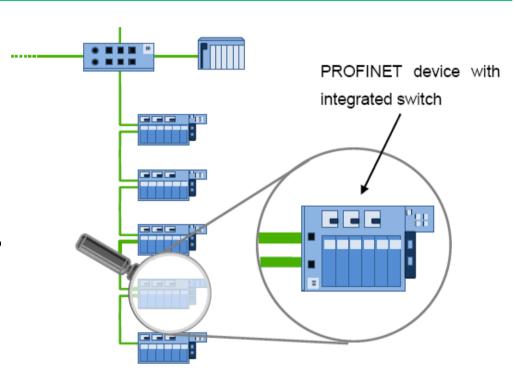




Topologia di rete

- Topologia a stella
 - Serve uno switch
 - Ogni dispositivo ha il suo cavo
- Topologia ad albero
 - Esistono dei livelli gerarchici
 - Efficiente quanto si connettono tra loro gruppi di dispostivi che parlano principalmente a livello locale

Topologia di rete

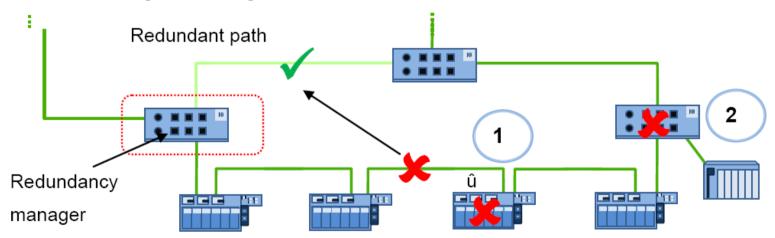


■ Topologia lineare

- Richiama visivamente PROFIBUS
- Si usano gli switch integrati
- Non servono switch aggiuntivi

IMPORTANTE

Se un dispositivo della catena si spegne, seguenti sono scollegati dalla rete!

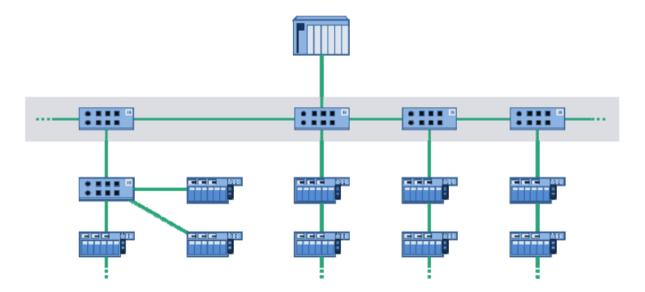


Topologia di rete - ridondanza

■ Topologia ad anello

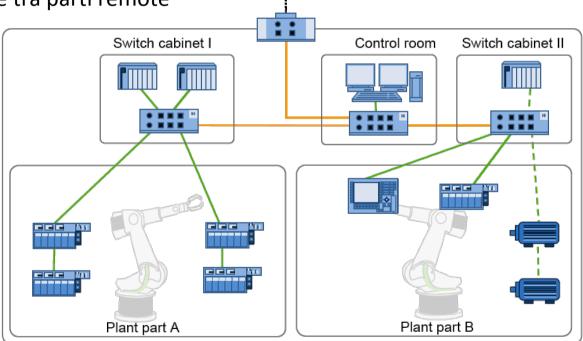
- Aumenta la disponibilità
- Un dispositivo dell'anello gestisce la ridondanza (Redundancy manager)
- Se si verifica 1 guasto la connessione è ancora possibile
- Se si verificano 2 guasti un segmento di rete resta isolato

Topologia di rete - ridondanza


- Topologia a doppia rete
 - Aumenta la disponibilità
 - Sono richieste due interfacce di comunicazione indipendenti per ogni dispositivo
 - Raddoppia tutta l'infrastruttura (cavi e switch)
 (E' possibile raddoppiare anche topologie lineari o ad anello)

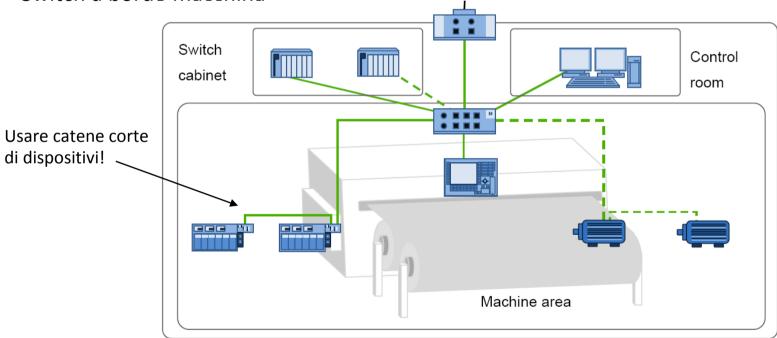
Struttura di riferimento

- Tra tutte le possibili combinazioni si raccomanda di partire da una struttura simile a quella mostrata per poi declinarla secondo le esigenze
 - Si suggerisce di usare switch managed CC-B per la backbone



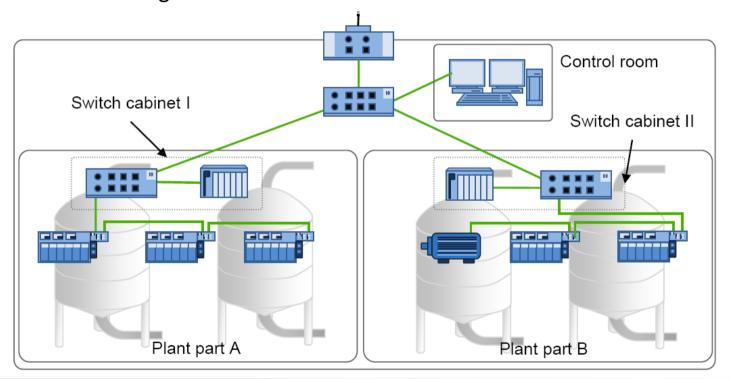
Esempio: automazione di fabbrica

- Controllori e switch vicino al campo
- Fibre ottiche tra parti remote



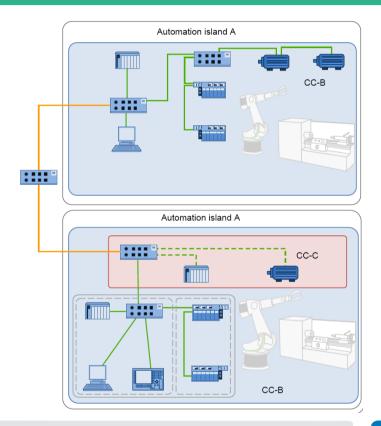
Esempio: bordo macchina

- Catene di dispositivi permettono un cablaggio ridotto.
- Switch a bordo macchina



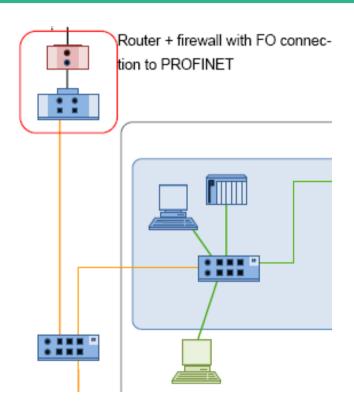
Esempio: impianto di processo

Struttura modulare e gerarchica



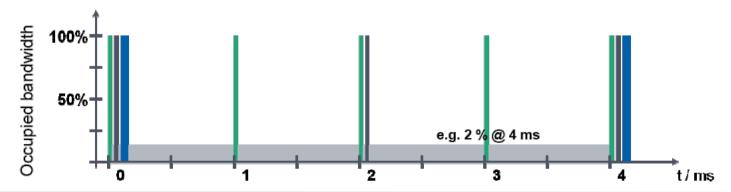
Topologia finale della rete PROFINET

- Applicazione delle regole precedenti
 - I componenti sono collegati all'interno dell'isola di automazione
 - Backbone di switch
 - Struttura gerarchica tra le isole



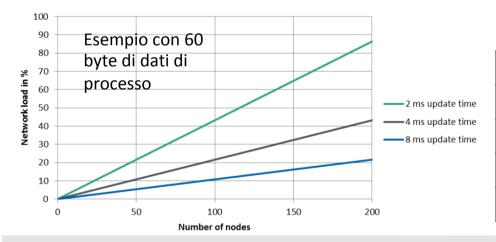
Industry 4.0: Accesso alla rete di fabbrica

- Il canale di accesso dati per la comunicazione verticale è fondamentale
- Bisogna garantire
 - Banda adeguata alle funzionalità Industry 4.0 che si vogliono implementare
 - Sicurezza (security)
- Accessi Layer 3 (IP) e non Layer 2 (MAC)
 - Si usano router con funzionalità firewall



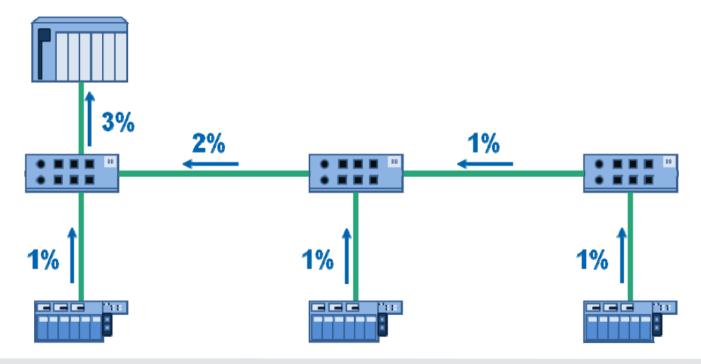
Definizione di carico di rete (network load)

- Carico di rete: Il rapporto tra la quantità di traffico sul link e la massima capacità del link
- Il carico di rete dipende da quale è l'intervallo in cui viene misurato
- La rete Ethernet è bidirezionale
 - esistono due carichi di rete , uno per ciascuna direzione nel link
 - In una rete ogni link può avere un carico diverso.
 - Ragionando "worst case" serve trovare il link con il massimo carico



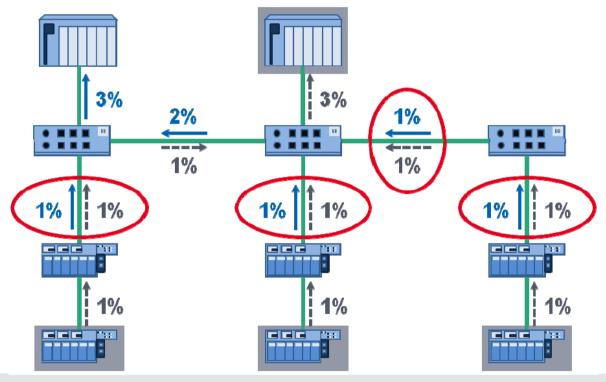
Progettazione del carico di rete

- Ogni dispositivo genera un traffico che dipende dal tempo di ciclo
 - Ogni dispositivo può avere un tempo di ciclo diverso
- E' importante scegliere il tempo di ciclo più alto tra quelli che soddisfano le richieste dell'applicazione perché in questo modo si tiene basso il carico di rete
- Durante il progetto non eccedere mai il 50% di carico di rete


Update time	Generated cyclic real-time network load per PROFINET device
1 ms	0.86 %
2 ms	0.43 %
4 ms	0.22 %
8 ms	0.11 %

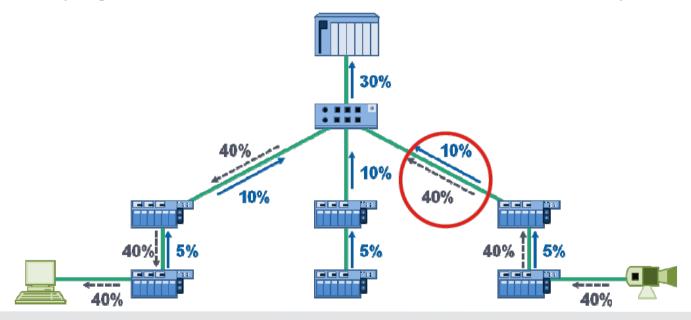
Esempio: singolo controller

■ Singolo controller: tutto il traffico PROFINET è diretto al controller



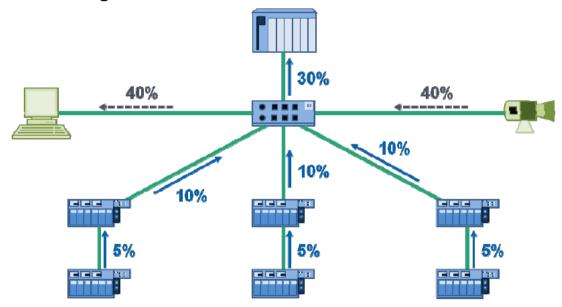
Esempio: multi controller

Multi controller: alcuni link sono interessati da più flussi!



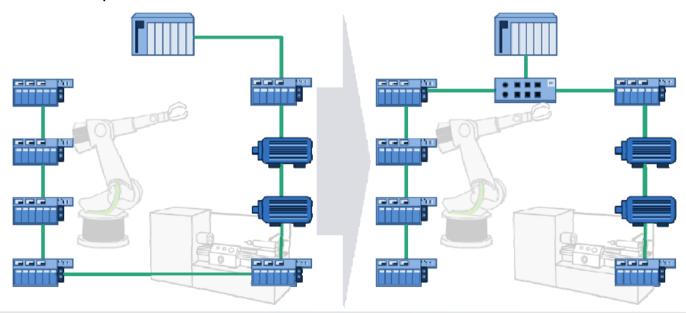
Esempio: traffico non real time

- Dispositivi non PROFINET presenti sulla rete, oppure accessi «Industry 4.0» possono generare un consistente carico di rete "non controllato"!
- Sistema mal progettato: il traffico non real time sovraccarica molti dispositivi



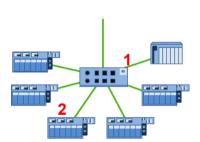
Esempio: traffico non real time

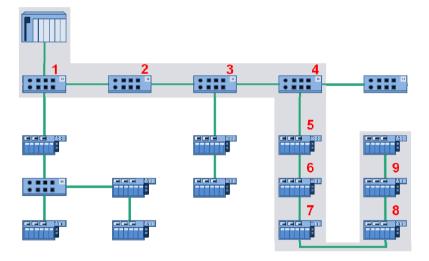
- Sistema progettato in modo migliore:
 - Il traffico non real time ha un percorso nella rete il più possibile diverso da quello di PROFINET
 - Il traffico non real time è gestito



Suggerimenti di progettazione

- Per minimizzare il carico di rete
 - Tenere le catene di dispositivi più corte possibili!
 - Utilizzare in modo preferenziale strutture a stella e albero

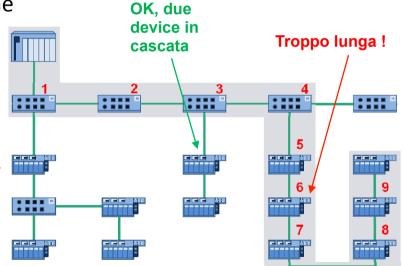

Suggerimenti di progettazione



- Massima profondità di linea: numero massimo di dispositivi in cascata
- La massima profondità di linea è da verificare sempre, specialmente in strutture articolate
 - Mai fare linee con più di 45 dispositivi

■ Nota: l'anello fisico per la ridondanza in realtà è una connessione logica in linea! (l'anello è aperto

ad una porta del redundancy manager!)



Suggerimenti dati dalla nostra esperienza

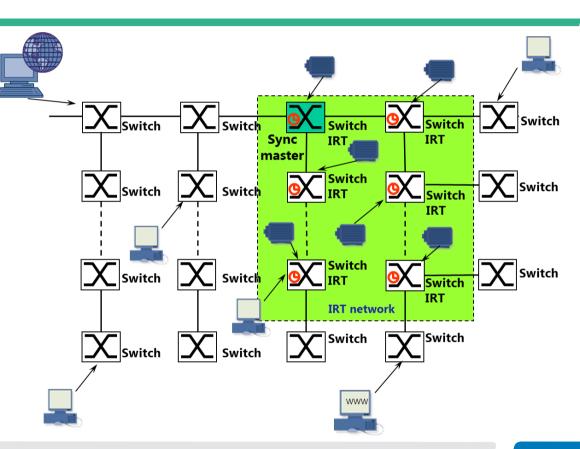
- Backbone con solo switch managed di buona qualità
- Lasciare una porta libera sulla backbone vicino al PLC
- Massimo 3 dispositivi a doppia porta in cascata
- Collegare i Pc di supervisione sempre alla backbone
- Collegare gli access point sempre alla backbone
- Un solo punto di accesso verso «l'alto» e collegarlo alla backbone

Architettura di rete PROFINET IRT

- Valgono le stesse regole del caso PROFINET RT
- Sono possibili tutte le configurazioni (stella, linea, anello)
- Massima profondità di linea consigliata è 30 per garantire sincronizzazione sempre ottima

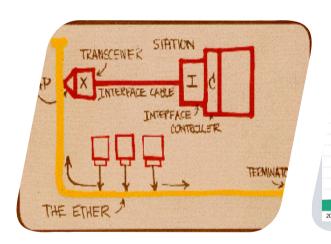
Richiami di PROFINET IRT

- Separazione nel tempo del traffico a priorità maggiore nel tempo
- I dati isocroni usano un canale separato nel tempo, totalmente compatibile con IP
- Sincronizzazione basata su PTCP (Precision Transparent Clock Protocol)



Esempio completo con PROFINET IRT

- Architettura libera
- Occorre garantire il percorso di sincronizzazione per IRT
- Traffico «Industry 4.0» ancora possibile sempre rispettando il massimo carico di rete



Conclusioni

29

Ethernet è una tecnologia in continua evoluzione che offre numerosi benefici

PROFINET offre la possibilità di realizzare facilmente reti già pronte per Industry 4.0

Domande?